Eaton Lightning Series Transmissions
TRIG0580
October 2007

FRLO-14410C-T2
FRLO-15410C
FRLO-15410C-T2
FRLO-16410C
FRLO-16410C-T2
FRLOF-14410C
FRLOF-14410C-T2
FRLOF-15410C
FRLOF-15410C-T2
FRLOF-16410C
FRLOF-16410C-T2
Overview

Transmission Features ... 1
Similarities to Current Eaton Fuller Transmissions .. 1
Significant Installation Differences from Current Eaton Fuller Transmissions .. 2
Related Publications .. 2

Specifications

Model Nomenclature ... 3
Gear Ratios and Steps .. 3
Shift Pattern ... 4

Options

Standard Features ... 5

Vehicle Interface - Mechanical

Dimensional Drawings .. 6
Engine Requirements .. 6
Master Clutch Requirements ... 6
Shift Lever Design ... 8
Internal Transmission Cooler Heat Transfer Capability ... 10
Fastener Information .. 11
PTO Interface ... 13

Vehicle Interface - Electrical

Vehicle Electrical Requirements .. 14
Vehicle Wiring Diagram .. 20

Transmission Application Approval

Transmission Application Approval Form .. 21
Transmission Application Approval Forms .. 22

Line Inspection

Pre-Start Checks ... 24
Dyno/Road Test .. 24

Appendix

Design Remedies for Shift Lever Jumpout .. 25
Technical Description of Jumpout ... 25
Ratios ... 27
Side View ... 28
Rear View ... 29
Overview

This manual has been prepared for OEM engineering personnel. It contains technical details on the new Eaton Fuller Lightning “FRLO-1X410C-T2 series model transmission.

Information contained within this manual was accurate at the time of printing. However, you should contact your Eaton Fuller Engineering representative prior to start of engineering for a new application.

Transmission Features

- Ten forward and two reverse gear ratios
- Approximately 170 lbs. less weight than current product “Super 10”
- Approximately 4.5” (117mm) shorter overall length than current product “Super 10”
- All helical gearing for noise reduction
- Low inertia mainshaft with “Super 10” shift pattern for easy shifting
- Electronic Control Unit (ECU) manages range and splitter shifts for more precise shifts with reduced wear on shift parts
- ECU adjusts range and splitter shift performance to compensate for temperature extremes
- ECU continuously monitors transmission performance and if system malfunctions, activates warning light and stores diagnostic information
- Top-2 automated shifting between top two gears (9th and 10th) is optional
- Reduced shift lever travel - both fore/aft and side/side
- Transmission internal oil to water heat exchanger
- New main case design with reduction in gasket surfaces
- With the exception of the vehicle air inlet, transmission contains no external air lines or fittings
- Visual confirmation of proper oil level, without removal of the fill plug, using the oil level sight glass

Similarities to Current Eaton Fuller Transmissions

- Clutch housing, input shaft, and clutch brake interface meet SAE specification
- Uses same shift lever / remote control mechanisms. Mounting location in the same relative position
Significant Installation Differences from Current Eaton Fuller Transmissions

- New exterior dimensions and reduced weight
- Electric Shift Knob
- OEM designed electrical control harness including J1939
- Requires an electronic engine which is in compliance with SAE J-1939 and certified for the “4” series transmission
- Electronic Control Unit (ECU) control of range and split shifts
- One drop-in magnetic speed sensor dedicated for input into the transmission ECU
- Internal oil to water heat exchanger requiring connection to engine cooling system
- Vertical location of rear transmission rear support studs
- Two 6 bolt PTO openings vs. current product 8 bolt and 6 bolt PTO openings
- Two rear mounted countershaft driven PTO drives standard
- New main case design. No separate shift bar housing or auxiliary housing
- Transmission air inlet located on driver’s side of transmission versus passenger side
- Location of reverse and neutral switches. Also they are metric thread. The switches are the same as those used on the FR-series transmission
- RTV Sealant used on flange surfaces (Fasteners must not be removed)

Related Publications

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadranger Warranty Guide</td>
<td>TCWY-0900</td>
</tr>
<tr>
<td>Roadranger Approved Lubricants</td>
<td>TCMT-0020</td>
</tr>
<tr>
<td>Roadranger Products Lubrication Manual</td>
<td>TCMT-0021</td>
</tr>
<tr>
<td>J1939 Engine Control Requirements Specification for Eaton Transmissions</td>
<td>Contact your Eaton Engineering Representative</td>
</tr>
<tr>
<td>In-cab Shift Pattern Instruction Label - Lightning Series</td>
<td>5586270</td>
</tr>
<tr>
<td>Driver Instructions - Lightning Series</td>
<td>TRDR-0580</td>
</tr>
<tr>
<td>Illustrated Parts Lists - Lightning Series</td>
<td>See Roadranger.com for Model Specific Parts Information</td>
</tr>
<tr>
<td>Installation Guide - Lightning Series</td>
<td>TRIG-0580</td>
</tr>
<tr>
<td>Service Manual - Lightning Series</td>
<td>TRSM-0580</td>
</tr>
<tr>
<td>Troubleshooting Guide - Lightning Series</td>
<td>TRTS-0580</td>
</tr>
</tbody>
</table>
Specifications

Model Nomenclature

Gear Ratios and Steps

10 Forward and 2 Reverse Ratios

<table>
<thead>
<tr>
<th>Gear Position</th>
<th>FRLO/F-xx410C-T2 Ratio</th>
<th>FRLO/F-16410C-T2 Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>.74 : 1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.00</td>
<td>36</td>
</tr>
<tr>
<td>8</td>
<td>1.39</td>
<td>39</td>
</tr>
<tr>
<td>7</td>
<td>1.88</td>
<td>36</td>
</tr>
<tr>
<td>6</td>
<td>2.64</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>3.57</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>4.95</td>
<td>39</td>
</tr>
<tr>
<td>3</td>
<td>6.72</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>9.33</td>
<td>39</td>
</tr>
<tr>
<td>1</td>
<td>12.66</td>
<td>36</td>
</tr>
<tr>
<td>Overall</td>
<td>17.15 : 1</td>
<td></td>
</tr>
<tr>
<td>Reverse/Low</td>
<td>12.43</td>
<td></td>
</tr>
<tr>
<td>Reverse/High</td>
<td>9.17</td>
<td></td>
</tr>
</tbody>
</table>
Shift Pattern

The splitter button on shift knob selects one of two available ratios in each lever position except the lower right position. That position automatically will shift between the top two gear ratios.

The shift pattern instruction label for this Lightning series transmission is available as Eaton Fuller part number 5586257.

Weight
530 lbs. / 241 kg for transmission with SAE #1 aluminum clutch housing. Shifting controls, clutch release parts, output yoke or lubricant are not included.

Length
28.12” / 714 mm Dimension from face of clutch housing to front bottoming surface of companion flange or yoke.

Oil Capacity
27 pints

Transmission Center of Gravity Location
With SAE No. 1 aluminum clutch housing, less shifting controls and output yoke.

<table>
<thead>
<tr>
<th>Coordinate</th>
<th>Viewed From</th>
<th>Measured From</th>
<th>Direction</th>
<th>Value - In (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal</td>
<td>Left side</td>
<td>Case/clutch housing interface</td>
<td>Rearward</td>
<td>9.37” (238)</td>
</tr>
<tr>
<td>Vertical</td>
<td>Left side</td>
<td>Mainshaft centerline</td>
<td>Upward</td>
<td>.32” (8.2)</td>
</tr>
<tr>
<td>Lateral</td>
<td>Rear</td>
<td>Mainshaft centerline</td>
<td>Left</td>
<td>.10” (2.5)</td>
</tr>
</tbody>
</table>

Inertia
(At Transmission input shaft, in Neutral) .0313 ft-lb-sec².

Warranty
Eaton component warranty coverage is listed in the Roadranger Warranty Guide TCWY-0900. This guide details complete component warranty coverage by specific vocation and their respective requirements.
To receive warranty coverage all terms and conditions in this manual must be adhered to.
Note: Any engine horsepower or torque re-rating beyond component ratings will immediately void the warranty.
Options

Standard Features
The following standard features are included on all Lightning series models:
- Eaton installed reverse switch (part number 4302748)
- Eaton installed neutral switch (part number 4302749)
- Eaton installed magnetic drain and magnetic fill plugs and sight glass
- Right and left countershaft extended splines for rear mounted PTO
- Right and left side openings for 6 bolt PTO
- Rear support studs (M16x1.5x34) & hex nuts (M16x1.5x20) installed by Eaton
- 16 tooth magnetic speedometer rotor
- Oil breather
- Internal transmission cooler fitting (for applicable models) 7/8-14 UNF 2B with o-ring seat
- Clutch housing with both above and below pull type clutch provisions machined and bushings installed
- Output bearing cover with electronic speedometer provisions for two drop-in sensors (see section 5 on “Speedometer / Vehicle Speed Sensor” for additional detail)

Optional Features
The following options are available and must be specified when ordering a transmission.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clutch Housing</td>
<td>SAE #1 Aluminum</td>
</tr>
<tr>
<td></td>
<td>SAE #1 Aluminum - Nodal engine mount</td>
</tr>
<tr>
<td></td>
<td>SAE #1 Aluminum - Hydraulic release</td>
</tr>
<tr>
<td>Input Shaft</td>
<td>2” 10 spline</td>
</tr>
<tr>
<td>Front Bearing Cover</td>
<td>For pull type clutch</td>
</tr>
<tr>
<td>Output Yoke</td>
<td>Half round - 1710, 1760, 1810</td>
</tr>
<tr>
<td></td>
<td>Full round - 1710, 1760, 1810</td>
</tr>
<tr>
<td></td>
<td>SPL-170, SPL-250, RPL-20, RPL-25</td>
</tr>
<tr>
<td>Shift Controls</td>
<td>Low, Medium, High Tower</td>
</tr>
<tr>
<td></td>
<td>LRC, SRC, CR</td>
</tr>
<tr>
<td>Shift Knob</td>
<td>With splitter control button only</td>
</tr>
<tr>
<td>Output Bearing Cover</td>
<td>Magnetic speedometer provisions for two drop-in sensors</td>
</tr>
<tr>
<td></td>
<td>Magnetic speedometer provisions for two threaded sensors</td>
</tr>
<tr>
<td>Speedometer</td>
<td>Single output drop-in speed pickup</td>
</tr>
<tr>
<td></td>
<td>Dual output drop-in magnetic speed pickup*</td>
</tr>
</tbody>
</table>

* Magnetic speed pickup for vehicle use may be supplied by vehicle manufacturer.
Vehicle Interface - Mechanical

Dimensional Drawings
Computer Aided Design (CAD) drawings are available. Contact your Eaton Fuller Engineering Representative to discuss your specific needs and required format.

Engine Requirements
This transmission requires an electronically managed engine which is in compliance with SAE J-1939. The transmission ECU will communicate with the engine ECU over the J-1939 communication link. Contact your Eaton Fuller Engineering Representative for engines which are approved with the use of Lightning transmission. See Section 5: Vehicle Interface - Electrical, for wiring installation details.

Note: Any engine horsepower or torque re-rating beyond component ratings will immediately void the warranty.

<table>
<thead>
<tr>
<th>Size</th>
<th>Material</th>
<th>Mounting Type</th>
<th>Clutch Release Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE #1</td>
<td>Aluminum</td>
<td>Standard Engine Mount</td>
<td>Above and below centerline for pull type only, 222mm 8.75" release shaft external boss face*</td>
</tr>
<tr>
<td>SAE #1</td>
<td>Aluminum</td>
<td>Nodal Engine Mount, See Nodal Section*</td>
<td>Above and below centerline for pull type only, 210mm 8.25" release shaft external boss face*</td>
</tr>
<tr>
<td>SAE #1</td>
<td>Aluminum</td>
<td>Standard Engine Mount</td>
<td>Hydraulic Release</td>
</tr>
</tbody>
</table>

* Clutch release yoke pivot shafts

Input Shaft
SAE 10 spline 2" (50.8mm) diameter. Pilot bearing diameter - 1.18" (30mm)

Master Clutch Requirements

Free-Travel Master Clutches
This transmission contains backlash or “free-travel” at the input shaft to main drive gear interface. This feature helps to prevent idle gear rattle. Because of this feature, the use of a master clutch containing free travel or pre-damped clutch discs is not recommended.

Soft Damped Clutch Discs
A soft rate damped clutch (7-spring, VCT, or Rockwell LTD) is required in all drivetrain systems using electronically controlled 10 liter engines and above. Eaton Fuller requires that transmission input torque spikes, due to drivetrain torsionals, must be less than 300 lbs. ft. above the nominal transmission input torque rating for engine speeds above 1000 rpm and vehicle road speeds above 20 mph.

Vehicle Air Supply Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet air pressure required</td>
<td>90-130 PSI (620-896 kPA)</td>
</tr>
<tr>
<td>Air Dryer</td>
<td>Required</td>
</tr>
<tr>
<td>Inlet Port Size</td>
<td>SAE 3/8" - 18 NPT</td>
</tr>
</tbody>
</table>

The inlet port is located on the transmission filter regulator assembly. This filter regulator is located on the left side of the transmission in the upper left rear quadrant. See transmission dimension drawings for location details.
The transmission filter regulator assembly regulates the vehicle supply air to 80 PSI (551 kPa).

No external air lines are present on this transmission. No external air lines are required for shift knob installation.

Vehicle Engine Exhaust Heat Source Clearance Envelope

The vehicle engine exhaust heat source can produce high temperatures that must be avoided by the transmission ECU. The exhaust piping, exhaust piping supports, or exhaust gas heat sources must not intrude within the transmission ECU heat source avoidance area. This heat source avoidance area is defined as a 88.9 mm [3.5inch] perimeter around the transmission ECU. The ambient temperature within this heat source avoidance area must be less than 250 F. See drawing 164-AD sheet 1 & 2 for the dimensional definition.

Shift Controls and Mounting Location

This transmission uses the same shift lever and remote slave control as current product Eaton Fuller transmission.

Three shift tower heights are available; Low, Medium, and High. Please note that the shift pattern of the Lightning transmission is tighter than many current models, which may allow the use of a lower tower. **Note: Because of the tighter shift pattern Eaton does not recommend the use of the high shift tower with Lightning.** Remote slave controls available from Eaton Fuller include; Low Remote Control (LRC), Single Rod Control (SRC), Cable Remote (CR). Contact your Eaton Fuller Engineering Representative for additional information or assistance in designing shift controls.

The mounting location is the same relative position as current Eaton Fuller transmissions. A standard shift opening and forward shift opening is available. The forward opening moves the low shift tower pivot ball 2.53’ (64.4mm) forward from the standard opening location. See dimensional information for location details.

Note: See Section 5: Vehicle Interface - Electrical, for information on installation of shift knob.
Shift Lever Design

Travel Calculation

Recommended Shift Lever (Mechanical Advantage) Ratio is 5.5 - 6.5 : 1.

<table>
<thead>
<tr>
<th>(Internal) Shift Lever Travel</th>
<th>Lightning</th>
<th>Lightning</th>
<th>Lightning</th>
<th>Lightning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rail Movement - Forward Gear Position</td>
<td>.43” (11mm)</td>
<td>88%</td>
<td>88%</td>
<td>100%</td>
</tr>
<tr>
<td>Rail Movement - Rearward Gear Position</td>
<td>.43” (11mm)</td>
<td>88%</td>
<td>88%</td>
<td>100%</td>
</tr>
<tr>
<td>Side Travel - Right (From center position)</td>
<td>.25” (6.4mm)</td>
<td>50%</td>
<td>50%</td>
<td>100%</td>
</tr>
<tr>
<td>Side Travel - Left (From center position)</td>
<td>.25” (6.4mm)</td>
<td>50%</td>
<td>50%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Contact your Eaton Representative for applications with lever ratios outside of this range.

Shift Lever Jumpout Avoidance

Transmission shift lever jumpout can be an irritating problem for vehicle drivers. Careful truck design can minimize or eliminate this problem. Please refer to Remedies for Shift Lever Jumpout in the appendix of this document.

Transmission Oil Requirements

Use Eaton approved E-500 lubricants only. Gear oils formulated with EP additive packages must not be used with the Lightning transmission and will void the warranty. For additional information on lubricants reference Roadranger Products Lubrication Manual - TCMT-0021.

<table>
<thead>
<tr>
<th>Type</th>
<th>Grade (SAE)</th>
<th>Ambient Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Eaton Approved E-500 Lubricants only</td>
<td>50W</td>
<td>All</td>
</tr>
</tbody>
</table>

Oil lube tag 4304885 with the above oil use instruction is attached standard to the oil fill plug.

Transmission Oil Capacity

27 pints

Transmission Oil Level Sight Glass

The transmission is equipped standard with an oil level sight glass. The sight glass allows visual confirmation of correct oil fill in transmission. Proper oil fill is confirmed when the oil level is at the centerline of the sight glass. See dimensional drawings for location.

Transmission Cooling Requirement

Transmission operating temperature requirements: - Transmissions must not be operated at temperatures above 250° F (120°C).
Internal Oil Cooler

This transmission will be equipped with an internal oil / water heat exchanger. Vehicle engine coolant is routed to the transmission where it circulates through a heat exchanging element in the bottom of the transmission case. Heat from the transmission oil is absorbed by the circulating engine coolant. The heat exchanger will also warm the transmission oil at low ambient temperatures. The heat exchanger inlet and outlet are located at the rear of the transmission.

In all cases, the coolant flow and coolant temperature must be sufficient to maintain transmission oil temperatures below 250°F (120°C) at worse case operating conditions.

It is recommended that the engine manufacturer is consulted in the application and connection of the transmission internal heat exchanger to the vehicle’s engine.

The engine coolant circuit will require 400 ml of coolant to fill the heat exchanger. Additional coolant volume is in the lines between the engine and transmission.

A chart at the end of this section shows additional information of Eaton Transmission cooler applications.

Note: The use of EP oils will void the transmission warranty

OEM Guidelines for the Lightning internal coolers:

- Provide 10 GPM coolant @1500 RPM
- Maximum coolant "In-Cooler" temperature not to exceed 200° F
Internal Transmission Cooler Heat Transfer Capability

The following chart shows the Lightning Internal Cooler heat transfer performance over a range of temperature differential conditions with an engine coolant consisting of a 50/50 mix of ethylene glycol and water. The engine coolant thermostat setting was 180°F with 10 gallon per minute coolant flow.

![Cooler Performance Chart](image)

Internal Transmission Cooler Coolant Flow Characteristics

The chart below describes the engine coolant flow characteristic for the Lightning Internal transmission Cooler. The pressure requirements to provide the associated coolant flow can be derived from the characteristic curve.

![Pressure vs Flow Chart](image)

Internal Transmission Cooler Fittings

Location: Cooler ports are located at the rear of the transmission. See dimension drawings for location details.

Fitting size and type: 7/8-14 UNF-2B female (with o-ring seat)
Fastener Information

REMOVAL OF ANY TRANSMISSION CAPSCREWS TO INSTALL BRACKETS OR WIRE HARNESSES IS NOT ALLOWED AND WILL VOID THE WARRANTY FOR OIL LEAKS. This transmission uses anaerobic gasket sealant. Removal and reinstallation of the clutch housing and any cover capscrews can result in future oil leakage and would void warranty for oil leaks.

Eight M8 stud end special screws (with hex nuts provided) are utilized at the rear countershaft bearing covers and PTO covers at selective locations for use by the vehicle manufacturer in attaching miscellaneous harnesses, hoses etc. (2 studs at 2:00 & 4:00 position and 2 at 8:00 & 10:00 position respectively at the RH & LH rear bearing covers; 2 studs at the centerline positions of each of the 6 bolt PTO LH & RH covers). The special screws clamping the covers to the transmission case must not be loosened when attaching or removing the provided M8 hex nuts. The recommended torque range for the M8 hex nuts is 27-31 N.m (20-23 Lb.Ft).

Four M10x1.5 tapped holes are also provided on the top of the transmission case for exclusive use by the OEM for wiring and hose harness attachment. The fasteners must not exceed thread engagement more than 16.00 mm (.63") maximum. The recommended fastener torque range is 54- 61 N.m (40-45Lb.Ft). See dimension drawings for location detail. In addition, lifting eyelets on the top and rear of the transmission can also be used for harness attachment.

All capscrews and stud fasteners are metric thread size. Pipe plugs, oil fill plug, and oil drain plug are SAE standard.

Lifting Eyelets

Cast protrusions with machined holes are incorporated into the transmission case. Two eyelets are present on the top of the transmission. Two eyelets are present on the rear of the transmission. Eyelet hole diameter is currently 17.8 mm (.70").

Rear Transmission Support

Two M16 mounting studs are provided at the rear of the transmission. These top positioned studs allow attachment of a rear transmission support bracket.

The centerline of these mounting studs is located 614.8 mm (24.20") back from mounting surface at front of clutch housing. This is the same dimension as the current Eaton Fuller transmission.

The spacing of the mounting studs is also the same. However, the height of the mounting stud pad is now higher at 206.5mm (8.13") from the transmission centerline versus a 174.8mm (6.88") dimension for the current product.

The standard Eaton 5577504 stud fastening length (34mm stud length – 20mm nut) = 14 mm. Thread size: nut attachment end - M16x1.5. Attachment nut: final assembly recommended torque specification = 230 – 257 N.m [170 – 190 lbs. ft.]. On centerline with spacing of 127 mm (5.00")

WARNING: To avoid damage to the transmission - for installations not utilizing the standard Eaton installed stud above, any alternate transmission housing rear support threaded fastener must meet the following minimum criteria.

Fastener thread must be compatible with the transmission tapped hole specification of M16x2.0 – 4H.

Transmission housing end of fastener: the length of fastener full threads must be less than 18mm [.71"].
Transmission housing end of fastener: the fastener full thread is to transition to the shank diameter and must provide a limitation to the installed depth of the fastener into the transmission housing tapped hole. Limitation on the installed depth of the fastener into the transmission tapped hole must be less than 21 mm [0.83 ”].

Speedometer/Vehicle Speed Sensor

See “Vehicle Interface - Electrical” on page 14, for installation information.

Output Spline

<table>
<thead>
<tr>
<th>Type</th>
<th>Involute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside Diameter</td>
<td>69.9 mm (2.75”)</td>
</tr>
<tr>
<td>Number of teeth</td>
<td>54</td>
</tr>
<tr>
<td>Diametrical pitch</td>
<td>20-40</td>
</tr>
<tr>
<td>Pressure angle in degrees</td>
<td>37.5</td>
</tr>
</tbody>
</table>

Output Yoke

The transmission can be ordered with the output yoke installed by Eaton Corporation, or the yoke can be obtained separated by the OEM and installed by the OEM.

The same output yokes used on Eaton Fuller “2” FR Series and “9” RT Series are used on the Lightning Series.

Note: The rear seal surface is not on the output yoke.

The following output yoke options are available.

<table>
<thead>
<tr>
<th>Series</th>
<th>Configuration</th>
<th>Yoke Front Face to Cross Center Dimension</th>
<th>Eaton Fuller Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1710</td>
<td>Half Round</td>
<td>143 mm (5.63”)</td>
<td>5505543</td>
</tr>
<tr>
<td>1710</td>
<td>Full Round</td>
<td>143 mm (5.63”)</td>
<td>5505544</td>
</tr>
<tr>
<td>1760</td>
<td>Half Round</td>
<td>143 mm (5.63”)</td>
<td>5505545</td>
</tr>
<tr>
<td>1760</td>
<td>Full Round</td>
<td>143 mm (5.63”)</td>
<td>5505546</td>
</tr>
<tr>
<td>1810</td>
<td>Half Round</td>
<td>143 mm (5.63”)</td>
<td>5505547</td>
</tr>
<tr>
<td>1810</td>
<td>Full Round</td>
<td>143 mm (5.63”)</td>
<td>5505548</td>
</tr>
<tr>
<td>RPL25</td>
<td>Half Round</td>
<td>159 mm (6.26”)</td>
<td>5505553</td>
</tr>
<tr>
<td>SPL170</td>
<td>Half Round</td>
<td>142 mm (5.60”)</td>
<td>5505571</td>
</tr>
<tr>
<td>SPL250</td>
<td>Half Round</td>
<td>145 mm (5.71”)</td>
<td>5505572</td>
</tr>
<tr>
<td>92N</td>
<td>Half Round</td>
<td>143 mm (5.63”)</td>
<td>5505578</td>
</tr>
</tbody>
</table>
PTO Interface

6 Bolt Side Openings

Two 6-bolt PTO openings are provided, one on each side of the transmission. See dimensional drawings for location details.

The 6 bolt PTO is driven off a countershaft gear, turning at 63% of engine speed. The side mount PTO must utilize dowel pins to insure proper helical gear alignment with the transmission.

Drive Gear: 51 Teeth, 8.38 Diametric Pitch, 17.5° Pressure Angle, 33.1° Right Hand Helix Angle

Rear Countershaft Mounted

Two rear countershaft mounted PTO locations are provided, one on each side of the transmission. See dimensional drawings for location details.

The rear countershaft mounted PTO is driven off a splined extension of the front countershaft. The drive speed is turning at 63% of engine speed.

Drive spline: 31 Teeth, 24 Diametric Pitch, 25° Pressure Angle

Note: Reference Eaton Service Manual (TRSM-0580) for PTO installation and sealant requirements.

Clutch Housing Nodal Mount Interface

The SAE symmetrical nodal mount interface is provided. The nodal mount interface bracket space claim is defined in the following dimensional drawing.
Vehicle Interface - Electrical

Vehicle Electrical Requirements

The OEM is responsible for designing and providing a wiring harness and connector for the vehicle to transmission electrical interface. The OEM is also responsible for providing the J-1939 and J-1587 data link to the transmission.

Contact your Eaton Fuller Engineering representative early in the harness design for assistance. This OEM wiring harness design (and the interface with the vehicle and transmission) must be reviewed with Eaton Transmission Engineering prior to production.

Top-2 Operation

Lightning transmissions can be specified with the optional Top2 (T2) feature. T2 is an automated shifting function between the top two transmission gear ratios (9th & 10th gears). The Lightning T2 operation is controlled by the transmission Electronic Control Unit (ECU) compared to other Eaton Super10 Top-2 models which relied on the engine Electronic Control Module (ECM) for T2 control.

Engine Requirements

This transmission requires an electronically managed engine which is in compliance with SAE J- 1939. The transmission ECU will communicate with the engine ECU over the J-1939 communication link. Contact your Eaton Fuller Engineering representative for compatible engines that have been certified for the “4” series transmission.

Note: Any engine horsepower or torque re-rating beyond component ratings will immediately void the warranty.

Engine VEP Settings

The engine VEP settings for Lightning are different compared to Super 10 Top-2. To avoid Engine faults and possible performance issues, the following engine settings are required for Lightning:

- TOP 2 - Disabled or Off
- Transmission Solenoid(s) - Disabled or Off
- J-1939 - Enable

Detroit Diesel Optimized Idle System

This system requires the addition of a low output / low gain vehicle output speed sensor (VSS) hardwired to the engine ECM. In addition to the dedicated VSS the engine configuration setting for 'Transmission_ID' must be set to: Transmission ID #0 - Manual. This setting allows the engine to recognize the dedicated hardwired VSS for output speed and maintains required J1939 communication between the transmission and engine.

Contact Detroit Diesel for additional information

Road Speed Governor Configuration

Engine Road Speed Governor configuration must be configured so that the governed speed settings do not interfere or inhibit the transmission from reaching the automatic Top-2 (9-10) shift point.
Minimum Cruise Control Speed Settings

Engine Minimum Cruise Speed Settings may effect the cruise control 'Resume' function if the minimum speed is set above the engine speed RPM that results at the completion of the automatic Top-2 (9-10) upshift. If this occurs the minimum cruise speed setting must be lowered.

Wiring Harness Design Notes

All wires to be 16 Gage GXL per SAE J-1128

All wires to be identified.
Transmission Electronic Control Unit (ECU) Connection

ECU Connector (Contained on ECU) 18 pin sealed connector: Cinch P/N 58101-18-011 (Packard P/N 12040923 is equivalent).

ECU Mating Connector (shown) (Supplied by OEM) Use Packard sealed connector P/N 12040921 with P/N 12103881 terminal or equivalent to connect the vehicle harness to the ECU.

The following circuits are required for connection to the transmission ECU.

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Pin Location</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBATT</td>
<td>A1</td>
<td>Battery Positive Voltage 12 volt</td>
<td>10 Amp auto reset circuit breaker required. No relay permitted</td>
</tr>
<tr>
<td>VIGN</td>
<td>B1</td>
<td>Switch Battery Positive Voltage -Switched Ignition - 12 volt</td>
<td>10 Amp auto reset circuit breaker required. No relay permitted</td>
</tr>
<tr>
<td>GND1</td>
<td>A3</td>
<td>Battery Negative</td>
<td>Connection required at or near vehicle ground point</td>
</tr>
<tr>
<td>GND2</td>
<td>B3</td>
<td>Battery Negative</td>
<td></td>
</tr>
<tr>
<td>J-1939+</td>
<td>C1</td>
<td>Engine Communication - J1939 High</td>
<td>Configured per J-1939 physical layer specification</td>
</tr>
<tr>
<td>J-1939-</td>
<td>C2</td>
<td>Engine Communication - J1939 Low</td>
<td></td>
</tr>
<tr>
<td>CAN_Shield (J-1939)</td>
<td>C3</td>
<td>Engine Communication - J1939 Shield</td>
<td></td>
</tr>
<tr>
<td>J-1587+</td>
<td>A2</td>
<td>Serial Communication - Diagnostics J-1587 High</td>
<td></td>
</tr>
<tr>
<td>J-1587-</td>
<td>B2</td>
<td>Serial Communication - Diagnostics J-1587 Low</td>
<td></td>
</tr>
<tr>
<td>SPD1+</td>
<td>D1</td>
<td>Transmission Output Speed</td>
<td></td>
</tr>
<tr>
<td>SPD1-</td>
<td>D2</td>
<td>Transmission Output Speed</td>
<td></td>
</tr>
<tr>
<td>Knob_Gnd</td>
<td>F3</td>
<td>Shift Knob Ground</td>
<td></td>
</tr>
<tr>
<td>Srv_Light</td>
<td>D3</td>
<td>Power to Knob mounted service light</td>
<td></td>
</tr>
<tr>
<td>Splitter_SW</td>
<td>E3</td>
<td>Voltage Signal to Splitter Switch</td>
<td></td>
</tr>
<tr>
<td>Cruise /Retarder</td>
<td>E1, E2, F1, F2</td>
<td>Reserved for engine cruise / engine retarder</td>
<td>Contact your Eaton Fuller Engineering representative for availability.</td>
</tr>
</tbody>
</table>
Shift Knob

This transmission uses an electric shift knob. Unlike previous Eaton Fuller shift knobs, which switched a pneumatic signal, this knob uses an electrical signal to indicate a driver intended splitter shift.

The shift knob also includes a small transmission service lamp to alert the driver to vehicle interface malfunctions and transmission malfunctions.

Standard Shift Knob - Includes control button for transmission splitter shift

Shift Knob Connection

Packard™ 3 pin connectors are used for connection at the shift knob. A second connector at the base of the shift tower can be added by the OEM customer to facilitate shift lever installation and removal. However, this second connection could reduce harness reliability and is not recommended. This second connector must be fully sealed from external contaminants. Contact your Eaton Representative for second connector detail if this option is used.

Standard Shift Knob Connections

The standard shift knob is equipped with the following Packard™ series 150 3-way connector (female body type).

Provided by Eaton as part of the knob

- Packard 12047781 Body (female)
- Packard 12047783 Secondary/Lock
- Packard 12064971 Terminal Socket (22 gage)

The OEM wiring harness must use the following Packard™ series 150 3-way connector (male body type).

Provided by the OEM as part of the harness

- Packard 12047782 Body (male)
- Packard 12047784 Secondary Lock
- Packard 12047581 Terminal Pin (18 gage)
- Packard 12059894 Terminal Pin (22 gage)
OEM Vehicle Harness Pin Outs

<table>
<thead>
<tr>
<th>Knob Packard Connector Pin</th>
<th>Circuit</th>
<th>Trans ECU Connector Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Srv_Light</td>
<td>D3</td>
</tr>
<tr>
<td>B</td>
<td>Knob_Gnd</td>
<td>F3</td>
</tr>
<tr>
<td>C</td>
<td>Splitter_SW</td>
<td>E3</td>
</tr>
</tbody>
</table>

Shift Knob Lever Harness – Strain Relief

The harness portion containing the Splitter Switch, Ground, and Service Light wiring that is channeled along the shift lever, must be strain relieved to the lever in at least one location between the exit of harness from the base of the shift lever (typically at the floor board boot) and the bottom of the shift knob skirt. The harness strain relief must limit the loading to less than 3 lbs. ft. at the connection at the shift knob.

Reverse Switch

The 4302748 reverse switch will be installed by Eaton. The reverse switch is a normally open ball type switch. When the transmission is shifted to reverse, the ball is depressed and the switch closes.

Location Left side, top of transmission. See dimensional drawings for location details.

Thread Size M14 - 2.0

Mating Connector Packard P/N 12015792

Neutral Switch

The 4302749 neutral switch will be installed by Eaton. The neutral switch is a normally closed a ball type switch. When the transmission is shifted into any gear, the ball is depressed and the switch opens.

Location Left, rear, top of transmission. See dimensional drawings for location details.

Thread Size M16 - 1.5

Mating Connector Packard P/N 12015378

WARNING: This switch should not be the sole source means of detecting neutral.

Speedometer / Vehicle Speed Sensor

The speedometer / vehicle speed sensor for the Lightning transmission has significant differences from other Eaton transmissions. The transmission ECU requires a dedicated electronic drop-in speed sensor that will be installed by Eaton and will be connected to the OEM electrical harness. Additional detail is listed below on the speedometer rotor, bearing cover, and drop-in speed sensors. Contact your Eaton representative with any additional questions.

Speedometer Rotor

The Lightning transmission is supplied with a 16-tooth rotor for magnetic speed pick-up. A mechanical speedometer drive is not available on this transmission model.
Output Bearing Cover Speed Sensor Provisions
The standard output bearing cover supplied with the transmission has two drop-in speed sensor provisions. The standard cover allows provisions for two drop-in sensors available to the vehicle manufacturer at the 4:00 & 8:00 positions. The installed drop-in A-7365 sensor dedicated to the transmission ECU is installed at the 10:00 c position. The option is available for Eaton to install the single, or dual, output sensor(s) in either of the two available drop-in positions (4:00 & 8:00).

The optional output bearing cover has two threaded speed sensor provisions. The optional cover allows provisions for two threaded sensors available for the vehicle manufacturer at the 4:00 & 8:00 positions. The installed drop-in A-7365 sensor dedicated to the transmission ECU is installed at the 10:00 c position. Eaton will not install the threaded speed sensor type. See dimensional information for location details.

Detroit Diesel Optimized Idle System
When this system is activated an additional low output / low gain thread-in or drop-in output speed sensor may be needed in addition to the dedicated drop-in speed sensor supplied by Eaton. Contact Detroit Diesel for additional information.

“Drop-in” Speed Sensor
Drop-in speed sensors are available from Eaton. These are a non-adjustable magnetic style. Two types are available, single output or dual output.

Speed Sensor Specifications:
- Output voltage .5V peak to peak
- Sensor resistance 2K - 5K ohms
- Sensor Inductance 1 to 5 Henries
- Connector Packard Metri-Pack 150

Single Output Sensor (Two Terminal) Eaton Fuller P/N A-7365

<table>
<thead>
<tr>
<th>Mating Connector Parts</th>
<th>Eaton Fuller P/N</th>
<th>Packard P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector Body</td>
<td>55066567</td>
<td>12162192</td>
</tr>
<tr>
<td>Connector Seal</td>
<td>5507525</td>
<td>12040750</td>
</tr>
<tr>
<td>Cable Seal</td>
<td>5507526</td>
<td>12040751</td>
</tr>
<tr>
<td>Assembly</td>
<td></td>
<td>12162193</td>
</tr>
<tr>
<td>Socket</td>
<td>5507046</td>
<td>12124075</td>
</tr>
</tbody>
</table>

Dual Output Sensor (Four Terminal) Eaton Fuller P/N A-7366

<table>
<thead>
<tr>
<th>Mating Connector Parts</th>
<th>Eaton Fuller P/N</th>
<th>Packard P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector Body</td>
<td>55066607</td>
<td>12162187</td>
</tr>
<tr>
<td>Connector Seal</td>
<td>5507534</td>
<td>12040756</td>
</tr>
<tr>
<td>Cable Seal</td>
<td>5507535</td>
<td>12040757</td>
</tr>
<tr>
<td>Assembly</td>
<td></td>
<td>12162188</td>
</tr>
<tr>
<td>Socket</td>
<td>5507046</td>
<td>12124075</td>
</tr>
</tbody>
</table>
Vehicle Interface

Vehicle Wiring Diagram

- **A1**: 10 AMP FUSE
- **B1**: 10 AMP FUSE
- **A2**: J1587(+)
- **B2**: J1587(-)
- **A3**: GROUND (GND1)
- **B3**: GROUND (GND2)
- **D1**: A = Speed Sensor (+)
- **D2**: B = Speed Sensor (-)
- **D3**:
- **F3**:
- **E3**:
- **E1**:
- **E2**:
- **F1**:
- **F2**:
- **C3**:
- **C2**:
- **C1**:

Note: Power source connections must be reliable and as close to the actual source as possible. Relay connections are not advisable.

ATA J1587

- **C1**: Shield
- **C2**: J1939(-)
- **C3**: J1939(+)

Reserved for Engine Cruise Control and Engine Retarder

Sensor Supplied by Eaton

- **A**: Service Light Power
- **B**: Shift Knob Ground
- **C**: Voltage Signal

Engine ECM

- **Terminating resistor**
- **J-1939/11 data link (OEM supplied)**
- **Shield termination**
- **Terminating resistor**

Note: Shield Not Used with J1939 Lite.
Transmission Application Approval

Transmission Application Approval Form

The intended use of all transmission installations must be approved by Eaton Fuller engineering. Complete Form FUL-170 and submitted to: Email: TransApplications@Eaton.com, Fax: 269-342-3574. All notes and limitations on Form FUL-169L apply.

Wiring harness design and construction must also be approved by Eaton Fuller engineering. Contact your Eaton Fuller Engineering representative for details.

Driveline Torsional Vibration

Transmission input torque spikes due to drive train resonance, must be less than 300 lbs. ft. above the nominal transmission input torque rating for engine speeds above 1000 rpm and vehicle road speeds above 20 mph. This requirement may demand careful attention to driveline operating in addition to the required “soft damped clutch”.

For additional help with Driveline Vibration, see RRMT-0001 and RRMT-0002 on www.Roadranger.com.
Transmission Application Approval Forms

FUL-170

Eaton® Fuller® Application Approval Form FUL-170 – Rev. 01/04

Transmissions

Approval I.D. No.: ________________
Chassis # (s): ________________
No. of Vehicles: ________________
Projected Build Date: ________________
OEM / Plant Location: ________________
Customer / Fleet: ________________

Dealer Information

Dealership Name: ________________
Dealer Address: ________________
Contact: ________________
Telephone: ________________
FAX: ________________

APPROVAL REQUEST FOR: ________________
Oil Cooler: YES or NO

ENGINE INFORMATION:

Make: ________________
Model: ________________
Displacement: ________________ Liters
Rated Horsepower ________________ at ________________ RPM
Peak Torque ________________ Lbs-ft at ________________ RPM
Governed Speed: ________________ RPM
Top Speed Limit Setting: ________________ MPH
Cruise Speed: ________________ MPH

DRIVELINE INFORMATION:

Rear Axle Make: ________________
Model: ________________
Ratios: ________________
Drive Tires Make: ________________
Model: ________________
Size: ________________ or Revs / Mile
Retarder Make: ________________
Model: ________________
Type: ________________
Clutch Make: ________________
Model: ________________

Trans Case / Aux. Trans
Make: ________________
Model: ________________
Ratios: ________________

CHASSIS INFORMATION

Model: ________________
Drive Configuration (6x4, 4x2) ________________
Vehicle Voltage (12 or 24v) 12 V
Max Weight on Drive Wheels ________________ Lbs
Max GVW ________________ Lbs
Max GCW ________________ Lbs

VOCATIONAL AND BODY SPECIFIC INFORMATION:

Vocation (Line Haul, Dump, Refuse, Mixer, etc) ________________
Body Type ________________
Trailer Type ________________
Area of Operation: Country(s) ________________
State / Province / Region ________________
Road Usage: Highway ________________ % Secondary / City ________________ %
Off-Highway ________________ % Off-Road ________________ %
Maximum Grade on Which Vehicle will be Required to Operate ________________ %

TRANSMISSION FEATURE / OPTION REQUIREMENTS:

PTO Usage: None 6 Bolt Engine Split-Shaft Countershaft: 6 Bolt 8 Bolt Aux ________________
PTO Model: ________________
PTO Driven Equipment: ________________

PERSON SUBMITTING REQUEST ________________
PHONE: ________________
FAX: ________________

FIRM NAME & ADDRESS:

ADDitional NOTES / REQUIREMENTS:

SIGNED: ________________
APPLICATION ENGINEER: ________________
DATE: ________________

1. This Application Approval Form (FUL-170) is intended for use as an approval for warranty ONLY. An approval indicates that the given configuration meets the minimum requirements of the specified product; it does not indicate approval to ship the product.
2. All Eaton warranty guidelines apply for coverage and specific labor repair times. Reference Eaton publications TCWY-0600 and TCWY-0900.
3. Refer to form FUL-169 () for Blanket Application Requirements.
APPROVED ON-HIGHWAY* APPLICATIONS FOR EATON LIGHTNING TRANSMISSIONS

Written Approval Required For All Applications Not Meeting the Requirements of This Form - Use Form FUL-170 (Request for Application Approval).

General requirements that must be met by ALL applications (Blanket or Submitted):
- All requirements for the base product as stated on Form FUL-169 must be met.

Products included in this approval are:

- FRLO-14410C
- FRLO-15410C
- FRLO-16410C
- FRLO-14410C- T2
- FRLO-15410C- T2
- FRLO-16410C- T2

For Engines certified by Eaton for use with Lightning transmissions, see form FUL-200T (Top 2 and Lightning Engine Compatibility matrix).

Transmissions are in compliance with SAE J1939 requirements, the OEM is responsible to ensure Compatibility with other J1939 devices.

Vehicle air system must include an air dryer.

Eaton approved synthetic lubricant required - per form TCMT-0021.

Vehicle must have 12-volt electrical system.

SAE J1922 ATC (Automatic Traction Control) is not compatible with Lightning.

CAT Brakesavers are not allowed for use with Lightning.

Vehicles must have a minimum of .3% gradeability at cruise speed and 1% gradeability at peak torque.

Calculations are to be made at maximum rated conditions

Vehicles are to be used in USA, Canada and Mexico only. International / export sales will not be approved at this time.

Requirements that must be met for blanket approval – Applications not meeting these guidelines must be submitted to Eaton for approval.

All applications above 80,000lb GCW need to be submitted for individual approval. (See note #1)

All applications for non-typical highway (i.e. dump, refuse, and other “vocational” applications) need to be submitted for individual application approval.

Note #1: This requirement is largely due to the uncertainty in the industry regarding cooling system performance (both temperature and flow), particularly with ‘02 emission engines. As the industry gains experience with the cooling system requirements for these new engines, the GCW limits will be reviewed.

*On-Highway is defined as limited access and general highways. Grades less than 8%, well maintained, concrete or asphalt surface, no more than 10% off-highway operation. Maintained gravel, crushed rock, hard packed dirt or similar road surfaces are acceptable when grades are less than 3%.
Line Inspection

This line inspection section was developed as an installation tool for line personnel to help ensure the correct operation of the Lightning transmission as it is installed in each vehicle. This general guide is a starting point that can be integrated into existing line assembly procedures.

Pre-Start Checks

These items should be conducted prior to the initial engine start-up.

1. Turn the key switch and visually observe the shift knob. Does the service light turn on? If yes, there is ignition power to the transmission. Perform the test with the splitter button in high and low split.
2. Visually verify that the transmission ignition power supply is protected by an automatic resetting 15 amp/12 VDC fuse or circuit breaker.
3. Visually verify that the battery power is protected by an automatic resetting 15 amp/12 VDC fuse or circuit breaker.
4. Verify the transmission has been filled with the correct amount and type of lubricant before starting the engine. The Lightning slight plug can be utilized to determine the correct amount. Use only Eaton Roadranger CD-50 or Eaton approved E-500 lubricant.
5. Verify the engine VEP settings are set properly. The engine controller should be set with
 a. 5.1. Top2 – Disabled or off
 b. 5.2. Transmission Solenoids – Disabled or off
 c. 5.3. J-1939 - Enabled

Dyno/Road Test

1. Verify correct clutch adjustments and correct pedal free travel per clutch manufacturer’s specifications.
2. Verify through normal operations that the temperature gauge (if installed) is functional.
3. Note that the AutoRange feature will not trigger the range air shift if the vehicle is not moving (this is different than the AutoRange function on the Super-10 transmission).
4. Verify through normal operations that the engine brake functions correctly per the manufacturer’s specifications.
5. Verify, during operation on the dyno or road test, proper operation of the splitter button, AutoRange shift, and the Top-2 function.
6. Visually check for lubricant and engine coolant drips or residue on the transmission and related cooler lines.
7. Make sure that the correct transmission dash label is present and that the driver’s instruction booklet is included with the other vehicle information.
8. Verify that the transmission diagnostic port (SAE J-1587) is accessible, either mounted on the dash left side or just under the dash left side.
9. Verify that the label to alert the customer of the type and brand of lubricant used on the transmission is attached to the transmission or included with the other vehicle information.
10. Clear historical fault codes by using the ignition key switch. To do this, place the shift lever in Neutral and set the parking brakes. Begin with the key in the ON position. Turn the key off and back on six times within five seconds (OFF/ON/ OFF/ON/ OFF/ON/ OFF/ON/ OFF/ON/ OFF/ON).
Appendix

Design Remedies for Shift Lever Jumpout

Annoying shift lever jumpout may occur on every truck if road conditions are severe enough, but this possibility can be minimized if some basic design guidelines are followed.

Technical Description of Jumpout

Shift lever jumpout is forces by the inertial effects of excessive road-induced vibration in the drivetrain. This road-induced shock causes the engine/transmission to pitch on its mounts as shown in Figure 1. This pitching occurs at the natural frequency of the engine/transmission/mount system, usually between 7 and 10 Hz. This pitching induces high vertical, fore/aft, and rotational accelerations on the transmission, and in particular, the shift lever. The shift lever then develops an inertial torque about its pivot, as determined by the sum of the inertial torques, as shown in Figure 2. Note that a rearward lever offset adds to the jumpout torque, whereas a forward offset reduces the total jumpout torque.

![Figure 1](image1.png)

![Figure 2](image2.png)
This jumpout torque is resisted by the rail detent force times its moment arm determined by the distance between the pivot and the rail (Figure 3). When the jumpout torque overcomes the detent torque, jumpout occurs. This always occurs when the drivetrain has very low torque, such as vehicle coast conditions, since friction from torque in the drivetrain locks the engaged sliding clutch to the gear and greatly overcomes any jumpout forces imposed.

\[
T_o = F_x d
\]

\(T \) = Detent torque
\(F \) = Detent force
\(d \) = Distance between pivot and rail

Since the lever itself is a dynamic system, it has its own natural frequency. Unfortunately, this also occurs between 7 and 10 Hz. This frequency is determined by lever height, lever offset, tower height, and isolator stiffness. If the natural frequency of the engine/transmission matches that of the lever, propensity for jump-out is greater because the engine-amplified inertial forces are amplified further by the lever resonance. Steps to Prevent Shift Lever Jumpout in Truck Design:

1. Design shift lever offsets forward of the shift lever pivot point. As Figure 2 shows, when the lever center of gravity is forward of the shift tower, the inertial torque due to the vertical acceleration from road-induced vibration will counteract the dominating rotational acceleration, resulting in a much lower total jumpout torque about the pivot point. Design the shift lever location slightly behind the driver to capitalize on this beneficial effect.

2. Design the engine/transmission pitch mode frequency away from the shift lever natural frequency. We recommend that the engine/transmission pitch mode be designed to 10 Hz. We think this is a good trade off between Noise/Vibration/Harshness considerations and excessive engine motion. If a low shift tower is specified with an isolator, the lever system natural frequency will occur at 8 Hz or below. This is far enough away from the engine/transmission pitch mode frequency to eliminate any coincident amplification.

3. Provide friction damping in the rear transmission support. Double leaf springs at the transmission rear support can provide interleaf friction that will effectively damp the engine/transmission pitch mode motion, thereby reducing jumpout torques.

Note: Shift lever mechanical advantage guidelines are as follows: FS Transmission Models - 8.5/1 to 10.0/1, T, RT, FR, FRO Transmission Models - 5.5/1 to 6.5/1.
Ratios

<table>
<thead>
<tr>
<th>Speed</th>
<th>Ratio</th>
<th>% Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>10th</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>9th</td>
<td>1.00</td>
<td>36</td>
</tr>
<tr>
<td>8th</td>
<td>1.39</td>
<td>41</td>
</tr>
<tr>
<td>7th</td>
<td>1.88</td>
<td>36</td>
</tr>
<tr>
<td>6th</td>
<td>2.64</td>
<td>40</td>
</tr>
<tr>
<td>5th</td>
<td>3.57</td>
<td>39</td>
</tr>
<tr>
<td>4th</td>
<td>4.95</td>
<td>36</td>
</tr>
<tr>
<td>3rd</td>
<td>6.72</td>
<td>36</td>
</tr>
<tr>
<td>2nd</td>
<td>9.33</td>
<td>39</td>
</tr>
<tr>
<td>1st</td>
<td>12.66</td>
<td>36</td>
</tr>
<tr>
<td>Hi Rev</td>
<td>9.17</td>
<td></td>
</tr>
<tr>
<td>Lo Rev</td>
<td>12.43</td>
<td></td>
</tr>
<tr>
<td>Overall Ratio</td>
<td>17.15 to 1</td>
<td></td>
</tr>
</tbody>
</table>